Am9217/8316A
 2048 x 8 Read Only Memory

DISTINCTIVE CHARACTERISTICS

- 2048×8 organization
- Plug-in replacement for 8316A
- Access times as fast as 450 ns
- Fully capacitive inputs - simplified driving
- 3 fully programmable Chip Selects - increased flexibility
- Logic voltage levels compatible with TTL
- Three-state output buffers - simplified expansion
- Drives two full TTL loads
- Single supply voltage -+5.0 V
- Low power dissipation
- N-channel silicon gate MOS technology
- 100\% MIL-STD-883 reliability assurance testing

FUNCTIONAL DESCRIPTION

The Am9217 devices are high performance, 16384-bit, static, mask programmed, read only memories. Each memory is implemented as 2048 words by 8 bits per word. This organization simplifies the design of small memory systems and permits incremental memory sizes as small as 2048 words. The fast access times provided allow the ROM to service high performance microcomputer applications without stalling the processor.

Three programmable Chip Select input signals are provided to control the output buffers. Each Chip Select polarity may be specified by the customer thus allowing the addressing of 8 memory chips without external gating. The outputs of unselected chips are turned off and assume a high impedance state. This permits wire-ORing with additional Am9217 devices and other three-state components.
These memories are fully static and require no clock signals of any kind. A selected chip will output data from a location specified by whatever address is present on the address input lines. Input and output voltage levels are compatible with TTL specifications.

Am9217/8316A

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC with Respect to VSS	+7.0 V
DC Voltage Applied to Outputs	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +7.0 V
Power Dissipation	1.0 V

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations o static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoir exposure to excessive voltages.

ELECTRICAL CHARACTERISTICS

Am9217ADC	$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Am9217BDC	$\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%$

Am9217BDC $\quad V C C=5.0 \mathrm{~V} \pm 5 \%$

| Parameters | Description | Test Conditions Min. Max. Min. Max. | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

VOH	Output HIGH Voltage	9217	$1 \mathrm{OH}=-200 \mu \mathrm{~A}$	2.4				Volts
		8316A	$10 \mathrm{H}=-100 \mu \mathrm{~A}$			2.2		
VOL	Output LOW Voltage	9217	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$		0.4			Volts
		8316A	$1 \mathrm{OL}=2.0 \mathrm{~mA}$				0.45	
VIH	Input HIGH Voltage			2.0	$\mathrm{VCC}+1.0$	2.0	$\mathrm{VCC}+1.0$	Volts
VIL	Input LOW Voitage			-0.5	0.8	-0.5	0.8	Volts
ILO	Output Leakage Current	Chip Disabled			10		10	$\mu \mathrm{A}$
ILI	Input Leakage Current				10		10	$\mu \mathrm{A}$
ICC	VCC Supply Current				70		98	mA

ELECTRICAL CHARACTERISTICS

Am9217ADM

Am9217BDM
Parameters

VOH	Output HIGH Voltage	9217	$10 \mathrm{H}=-200 \mu \mathrm{~A}$
VOL	Output LOW Voltage	9217	$1 \mathrm{OL}=3.2 \mathrm{~mA}$
VIH	Input HIGH Voltage		
VIL	Input LOW Voltage		
ILO	Output Leakage Current	Chip Disabled	
ILI	Input Leakage Current		
ICC	VCC Supply Current		

Am9217XDM

Min. Min.		Max.		Units
2.2				Volts
	0.45			Volts
2.0	VCC +1.0			Volts
-0.5	0.8			Volts
	10			$\mu \mathrm{~A}$
	10			$\mu \mathrm{~A}$
	80			mA

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Am921: Am9217	C8316A	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & T_{A}=-5! \end{aligned}$	$\begin{aligned} & V C C=5.0 V \pm 5 \% \\ & V C C=5.0 V \pm 10 \% \end{aligned}$	Am9217A		Am9217B		8316A		Units
Parame		Descriptio	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	
ta	Address	o Output A	$\mathrm{tr}=\mathrm{tf}=20 \mathrm{~ns}$ Output load: one standard TTL gate plus 100pF (Note 1)		550		450		850	ns
tCO	Chip Sel	ct to Outpu			180		150		300	ns
tOH	Previous Respect	Read Data o Address		20		20		-		ns
tDF	Chip Sel	ct to Outpu			180		150		300	ns
Cl	Input Ca	pacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ All pins at 0 V		7.0		7.0		10	pF
CO	Output	apacitance			7.0		7.0		15	pF

Notes: 1. Timing reference levels: $\mathrm{High}=2.0 \mathrm{~V}$, Low $=0.8 \mathrm{~V}$.

PROGRAMMING INSTRUCTIONS CUSTOM PATTERN ORDERING INFORMATION

The Am9217 is programmed from punched cards, card coding forms or paper tape in card image format as shown below.
Logic " 1 " = a more positive voltage (normally +5.0 V)
Logic " 0 " = a more negative voltage (normally 0 V)

FIRST CARD

Column Number

10 thru 29
32 thru 37

50 thru 62
65 thru 72

SECOND CARD

Column Number 29
31 33

Description

Customer Name
Total number of " 1 ' s " contained in the data.
This is optional and should be left blank if not used.
8316A or 9217
Optional information

Description

CS3 input required to select chip (0 or 1)
CS2 input required to select chip (0 or 1)
CS1 input required to select chip (0 or 1)

Two options are provided for entering the data pattern with the remaining cards.
OPTION 1 is the Binary Option where the address and data are presented in binary form on the basis of one word per card. With this option 2048 data cards are required.

Column Number

$10,12,14,16,18$ Address input pattern with the most significant bit (A10) in column 10 and the least significant bit
$20,22,24,26,28,30$ (A0) in column 30.
$40,42,44,46,48$, Output pattern with the most significant bit (O8) in column 40 and the least significant bit (O1) in
50, 52, 54 column 54.

73 thru 80
Coding these columns is not essential and may be used for card identification purposes.
OPTION 2 is the Hexadecimal Option and is a much more compact way of presenting the data. This format requires only 128 data cards. Each data card contains the 8 -bit output information for 16 storage locations in the memory. The address indicated in columns 21, 22 and 23 is the address of the data presented in columns 30 and 31 . Addresses for successive data are assumed to be in incremental ascending order from the initial address. Since the address in columns 21,22 and 23 always points only to the first data on the card, column 23 is always zero. Columns 21 and 22 take all hex values from 00 through 7F: 128 cards in all. Data is entered in hex values and may be any combination of 8 bits, that is, hex values from 00 through FF.

